Data Science - February 2025
Topics
-
Чиглүүлэх хичээл -
Чиглүүлэх хичээл
Python хэлний ерөнхий ойлголтResources
-
Data Acquisition -
Data Acquisition
• Getting to Know Pandas;
• Acquiring Data from Different Sources;
• CSV files, Excel Files;
• Web Services. JSON and XML;
• Databases;
• Web Crawling and Scraping;
• Merging Different Sources. Constraints and Validity.Resources
-
Data Tidying and Cleaning -
Data Tidying and Cleaning
• Tidy Data: Normalization;
• Subsetting and Sorting, Reshaping;
• Data Summarization and Aggregation;
• Combining Datasets;
• Data Transformations;
• Handling Outliers and Missing Values;
• Data Cleaning Process.Resources
-
Data Visualization. Exploratory Data Analysis -
Data Visualization. Exploratory Data Analysis
• Analytical Graphs: Principles, Creation, Examples;
• Plots: Histograms, Scatterplots, Line Plots, Pie Charts. Usages and Examples;
• Enhancing Plots: Colors, Labels, Formatting;
• Telling the Correct Story;
• Exploratory Data Analysis: Motivation, Principles and Applications.Resources
-
Working with Images -
Working with Images
• Processing Images: Transformations and Information Extraction;
• Image Histograms;
• Fourier Transform. Image Spectrum;
• Image Morphology.
• Introduction to Convolutional Neural Networks;
• Image Generation.Resources
-
Working with Text -
Working with Text
• Processing Text: Information Extraction;
• "Bag of Words" Model and n-grams;
• TF-IDF;
• Introduction to Language Models. Practical Applications;
• Text Generation.Resources
-
Regression Models -
Regression Models
• Regression: Definition and Problem Statement;
• Linear Regression. Ordinary Least Squares;
• Multiple Linear Regression;
• Logistic Regression: Problem Statement;
• Logistic Regression Application.Resources
-
Data Science Project Architecture -
Data Science Project Architecture
• Data Science Process: Problem, Data, Algorithms, Models and Presentation;
• Organizing Code, Research and Other Artifacts;
• Performance and Security;
• Reproducible Research; Evidence-Based Research;
• Ethical Considerations and Governance.
Resources
-
Data Science in Production -
Data Science in Production
• Data Pipelines and Automation;
• Scaling Workflows to Handle Large Volumes of Data;
• Cloud Services;
• Data Monitoring: Dashboards;
• Introduction to DataOps and MLOps. Emerging Trends in Data Science.Resources
-
Нэмэлт хичээл - Data Transformation -
Нэмэлт хичээл - Data Transformation
No description yet
Resources
-
Шалгалтын бэлтгэл хичээл -
Шалгалтын бэлтгэл хичээл
Data Science хөтөлбөрийн шалгалтын мэдээллийг хүргэж байна.
Шалгалтын “Final Assignment_Data Science” файл дээрх даалгаврын дагуу хавсралтаар илгээсэн CSV файл дээрх дата дээр ажиллаж хийх даалгавар байгаа.
Шалгалтын даалгавар хураалгах хугацаа: 2025-03-16-ны Ням гаригийн 18:00 цаг хүртэл хурааж авна.
Шалгалтын даалгаврыг Zip файл болгож project@mlctraining.mn хаягаар илгээнэ.
Та өөрийн овог нэрийг бичихээ мартуузай.
Resources
Who is the target audience for the course?
How to enroll in the course?
To sign up for the course, contact MLC Business School and follow the provided steps. After a successful payment, you will be enrolled in the training.
What is the deadline for enrolling in the course and when does it start?
Enrollment in the course is open until 05 February. The training starts on 06 February 2025. You can find a detailed schedule of classes in the Topics section.
How and where are the classes be held?
You can study online in real time. Immediately after each lesson, you also get access to the lesson recording and learning resources.
What is the date of the exam and what does it include?
The exam will be held online and includes practical exercises. The dates of the exam are March 15rd (Final Exam) and March 22th (Retake exam).
Do I get a certificate after the exam?
After passing the exam, you acquire a certificate issued by SoftUni if your score is above 70%.

How much is the course fee and what does it include?
Online
400 USDOnline training in real-time
Lifetime access to lesson recordings and learning content
Help from a mentor in understanding the learning materials
Access to a closed Facebook group with all other course participants
Taking a regular exam and receiving a certificate
SoftUni gives you a 100% guarantee of the quality of this course. The most important thing for us is that you acquire the necessary skills and knowledge. In the event that the training fails to fulfil your expectations, we guarantee a full refund of the amount you have paid. You can receive a refund until the fifth lesson of the course.